Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
2.
Int J Environ Res Public Health ; 19(24)2022 12 17.
Article in English | MEDLINE | ID: covidwho-2163407

ABSTRACT

SARS-CoV-2 seroprevalence was reported as substantially increased in medical personnel and decreased in smokers after the first wave in spring 2020, including in our population-based Tirschenreuth Study (TiKoCo). However, it is unclear whether these associations were limited to the early pandemic and whether the decrease in smokers was due to reduced infection or antibody response. We evaluated the association of occupation and smoking with period-specific seropositivity: for the first wave until July 2020 (baseline, BL), the low infection period in summer (follow-up 1, FU1, November 2020), and the second/third wave (FU2, April 2021). We measured binding antibodies directed to SARS-CoV-2 nucleoprotein (N), viral spike protein (S), and neutralizing antibodies at BL, FU1, and FU2. Previous infection, vaccination, smoking, and occupation were assessed by questionnaires. The 4181 participants (3513/3374 at FU1/FU2) included 6.5% medical personnel and 20.4% current smokers. At all three timepoints, new seropositivity was higher in medical personnel with ORs = 1.99 (95%-CI = 1.36-2.93), 1.41 (0.29-6.80), and 3.17 (1.92-5.24) at BL, FU1, and FU2, respectively, and nearly halved among current smokers with ORs = 0.47 (95%-CI = 0.33-0.66), 0.40 (0.09-1.81), and 0.56 (0.33-0.94). Current smokers compared to never-smokers had similar antibody levels after infection or vaccination and reduced odds of a positive SARS-CoV-2 result among tested. Our data suggest that decreased seroprevalence among smokers results from fewer infections rather than reduced antibody response. The persistently higher infection risk of medical staff across infection waves, despite improved means of protection over time, underscores the burden for health care personnel.


Subject(s)
COVID-19 , Smokers , Humans , SARS-CoV-2 , Seroepidemiologic Studies , COVID-19/epidemiology , Health Personnel , Antibodies, Neutralizing , Longitudinal Studies , Antibodies, Viral
3.
PLoS One ; 17(10): e0276311, 2022.
Article in English | MEDLINE | ID: covidwho-2089426

ABSTRACT

During the SARS-CoV-2 outbreak, several epidemiological measures, such as cumulative case-counts (CCC), incidence rates, effective reproduction numbers (Reff) and doubling times, have been used to inform the general public and to justify interventions such as lockdown. It has been very likely that not all infectious people have been identified during the course of the epidemic, which lead to incomplete case-detection. We compare CCC, incidence rates, Reff and doubling times in the presence of incomplete case-detection. For this, an infection-age-structured SIR model is used to simulate a SARS-CoV-2 outbreak followed by a lockdown in a hypothetical population. Different scenarios about temporal variations in case-detection are applied to the four measures during outbreak and lockdown. The biases resulting from incomplete case-detection on the four measures are compared in terms of relative errors. CCC is most prone to bias by incomplete case-detection in all of our settings. Reff is the least biased measure. The possibly biased CCC may lead to erroneous conclusions in cross-country comparisons. With a view to future reporting about this or other epidemics, we recommend including and placing an emphasis on Reff in those epidemiological measures used for informing the general public and policy makers.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Communicable Disease Control/methods , Disease Outbreaks , Bias
4.
Statistical Modelling: An International Journal ; : 1, 2022.
Article in English | Academic Search Complete | ID: covidwho-2053544

ABSTRACT

Over the course of the COVID-19 pandemic, Generalized Additive Models (GAMs) have been successfully employed on numerous occasions to obtain vital data-driven insights. In this article we further substantiate the success story of GAMs, demonstrating their flexibility by focusing on three relevant pandemic-related issues. First, we examine the interdepency among infections in different age groups, concentrating on school children. In this context, we derive the setting under which parameter estimates are independent of the (unknown) case-detection ratio, which plays an important role in COVID-19 surveillance data. Second, we model the incidence of hospitalizations, for which data is only available with a temporal delay. We illustrate how correcting for this reporting delay through a nowcasting procedure can be naturally incorporated into the GAM framework as an offset term. Third, we propose a multinomial model for the weekly occupancy of intensive care units (ICU), where we distinguish between the number of COVID-19 patients, other patients and vacant beds. With these three examples, we aim to showcase the practical and ‘off-the-shelf’ applicability of GAMs to gain new insights from real-world data. [ FROM AUTHOR] Copyright of Statistical Modelling: An International Journal is the property of Sage Publications, Ltd. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

5.
Adv Stat Anal ; 106(3): 387-390, 2022.
Article in English | MEDLINE | ID: covidwho-2014185

ABSTRACT

The authors make an important contribution presenting a comprehensive and thoughtful overview about the many different aspects of data, statistics and data analyses in times of the recent COVID-19 pandemic discussing all relevant topics. The paper certainly provides a very valuable reflection of what has been done, what could have been done and what needs to be done. We contribute here with a few comments and some additional issues. We do not discuss all chapters of Jahn et al. (AStA Adv Stat Anal, 2022. 10.1007/s10182-022-00439-7), but focus on those where our personal views and experiences might add some additional aspects.

6.
Advances in statistical analysis : AStA : a journal of the German Statistical Society : Duplicate, marked for deletion ; : 1-4, 2022.
Article in English | EuropePMC | ID: covidwho-1887613

ABSTRACT

The authors make an important contribution presenting a comprehensive and thoughtful overview about the many different aspects of data, statistics and data analyses in times of the recent COVID-19 pandemic discussing all relevant topics. The paper certainly provides a very valuable reflection of what has been done, what could have been done and what needs to be done. We contribute here with a few comments and some additional issues. We do not discuss all chapters of Jahn et al. (AStA Adv Stat Anal, 2022. 10.1007/s10182-022-00439-7), but focus on those where our personal views and experiences might add some additional aspects.

7.
Viruses ; 14(6)2022 05 27.
Article in English | MEDLINE | ID: covidwho-1869821

ABSTRACT

Herein, we provide results from a prospective population-based longitudinal follow-up (FU) SARS-CoV-2 serosurveillance study in Tirschenreuth, the county which was hit hardest in Germany in spring 2020 and early 2021. Of 4203 individuals aged 14 years or older enrolled at baseline (BL, June 2020), 3546 participated at FU1 (November 2020) and 3391 at FU2 (April 2021). Key metrics comprising standardized seroprevalence, surveillance detection ratio (SDR), infection fatality ratio (IFR) and success of the vaccination campaign were derived using the Roche N- and S-Elecsys anti-SARS-CoV-2 test together with a self-administered questionnaire. N-seropositivity at BL was 9.2% (1st wave). While we observed a low new seropositivity between BL and FU1 (0.9%), the combined 2nd and 3rd wave accounted for 6.1% new N-seropositives between FU1 and FU2 (ever seropositives at FU2: 15.4%). The SDR decreased from 5.4 (BL) to 1.1 (FU2) highlighting the success of massively increased testing in the population. The IFR based on a combination of serology and registration data resulted in 3.3% between November 2020 and April 2021 compared to 2.3% until June 2020. Although IFRs were consistently higher at FU2 compared to BL across age-groups, highest among individuals aged 70+ (18.3% versus 10.7%, respectively), observed differences were within statistical uncertainty bounds. While municipalities with senior care homes showed a higher IFR at BL (3.0% with senior care home vs. 0.7% w/o), this effect diminished at FU2 (3.4% vs. 2.9%). In April 2021 (FU2), vaccination rate in the elderly was high (>77.4%, age-group 80+).


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Antibodies, Viral , COVID-19/diagnosis , COVID-19/epidemiology , Germany/epidemiology , Humans , Longitudinal Studies , Prospective Studies , Seroepidemiologic Studies
8.
Viruses ; 13(6)2021 06 10.
Article in English | MEDLINE | ID: covidwho-1264531

ABSTRACT

SARS-CoV-2 infection fatality ratios (IFR) remain controversially discussed with implications for political measures. The German county of Tirschenreuth suffered a severe SARS-CoV-2 outbreak in spring 2020, with particularly high case fatality ratio (CFR). To estimate seroprevalence, underreported infections, and IFR for the Tirschenreuth population aged ≥14 years in June/July 2020, we conducted a population-based study including home visits for the elderly, and analyzed 4203 participants for SARS-CoV-2 antibodies via three antibody tests. Latent class analysis yielded 8.6% standardized county-wide seroprevalence, a factor of underreported infections of 5.0, and 2.5% overall IFR. Seroprevalence was two-fold higher among medical workers and one third among current smokers with similar proportions of registered infections. While seroprevalence did not show an age-trend, the factor of underreported infections was 12.2 in the young versus 1.7 for ≥85-year-old. Age-specific IFRs were <0.5% below 60 years of age, 1.0% for age 60-69, and 13.2% for age 70+. Senior care homes accounted for 45% of COVID-19-related deaths, reflected by an IFR of 7.5% among individuals aged 70+ and an overall IFR of 1.4% when excluding senior care home residents from our computation. Our data underscore senior care home infections as key determinant of IFR additionally to age, insufficient targeted testing in the young, and the need for further investigations on behavioral or molecular causes of the fewer infections among current smokers.


Subject(s)
Antibodies, Viral/blood , COVID-19/epidemiology , COVID-19/mortality , Population Surveillance/methods , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/blood , COVID-19/immunology , Female , Germany/epidemiology , Humans , Latent Class Analysis , Male , Middle Aged , Prospective Studies , Seasons , Seroepidemiologic Studies , Surveys and Questionnaires , Young Adult
9.
Epidemiol Infect ; 149: e68, 2021 03 11.
Article in English | MEDLINE | ID: covidwho-1142397

ABSTRACT

We analysed the coronavirus disease 2019 epidemic curve from March to the end of April 2020 in Germany. We use statistical models to estimate the number of cases with disease onset on a given day and use back-projection techniques to obtain the number of new infections per day. The respective time series are analysed by a trend regression model with change points. The change points are estimated directly from the data. We carry out the analysis for the whole of Germany and the federal state of Bavaria, where we have more detailed data. Both analyses show a major change between 9 and 13 March for the time series of infections: from a strong increase to a decrease. Another change was found between 25 March and 29 March, where the decline intensified. Furthermore, we perform an analysis stratified by age. A main result is a delayed course of the pandemic for the age group 80 + resulting in a turning point at the end of March. Our results differ from those by other authors as we take into account the reporting delay, which turned out to be time dependent and therefore changes the structure of the epidemic curve compared to the curve of newly reported cases.


Subject(s)
COVID-19/epidemiology , Age Distribution , Aged , Aged, 80 and over , Bayes Theorem , Female , Germany/epidemiology , Humans , Male , Regression Analysis , SARS-CoV-2
10.
Biom J ; 63(3): 490-502, 2021 03.
Article in English | MEDLINE | ID: covidwho-950921

ABSTRACT

To assess the current dynamics of an epidemic, it is central to collect information on the daily number of newly diseased cases. This is especially important in real-time surveillance, where the aim is to gain situational awareness, for example, if cases are currently increasing or decreasing. Reporting delays between disease onset and case reporting hamper our ability to understand the dynamics of an epidemic close to now when looking at the number of daily reported cases only. Nowcasting can be used to adjust daily case counts for occurred-but-not-yet-reported events. Here, we present a novel application of nowcasting to data on the current COVID-19 pandemic in Bavaria. It is based on a hierarchical Bayesian model that considers changes in the reporting delay distribution over time and associated with the weekday of reporting. Furthermore, we present a way to estimate the effective time-varying case reproduction number Re(t) based on predictions of the nowcast. The approaches are based on previously published work, that we considerably extended and adapted to the current task of nowcasting COVID-19 cases. We provide methodological details of the developed approach, illustrate results based on data of the current pandemic, and evaluate the model based on synthetic and retrospective data on COVID-19 in Bavaria. Results of our nowcasting are reported to the Bavarian health authority and published on a webpage on a daily basis (https://corona.stat.uni-muenchen.de/). Code and synthetic data for the analysis are available from https://github.com/FelixGuenther/nc_covid19_bavaria and can be used for adaption of our approach to different data.


Subject(s)
COVID-19/epidemiology , Models, Statistical , Bayes Theorem , Germany/epidemiology , Humans , Pandemics , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL